본문 바로가기

unsupervised learning

AI는 '스스로 학습'할 수 있을까? 수많은 학습 데이터를 주기만 한다면, 딥러닝은 문제를 잘 풀 수 있다고 알려져 있습니다. 예를 들어 1,000개의 카테고리에 대해 130만 장의 분류된 이미지가 있는 ImageNet 태스크에 대해 딥러닝 알고리즘은 Top 5 기준 98% 이상의 정확도를 달성하며 사람의 판별 정확도를 뛰어넘었습니다. 하지만 태스크에 맞는 데이터를 수집하는 것은 비쌉니다. 세상에는 이미지가 넘쳐나지만, 각각의 이미지가 어떤 의미를 가지는지 사람이 일일이 분류해 라벨을 만드는 것은 오래 걸리고 힘이 듭니다. 지도 학습, 비지도 학습, 그리고 자기 지도 학습 데이터와 라벨이 주어질 때 라벨을 이용해 태스크를 수행하는 방법을 학습하는 것을 지도 학습(Supervised learning)이라고 부릅니다. 이미지 분류, 양불판정, .. 더보기
보상을 통해 학습하는 머신러닝 기술 1편 2016년 3월, 전 세계가 주목한 세기의 대결이 펼쳐졌습니다. 구글의 딥마인드(DeepMind)에서 만든 인공지능 바둑 프로그램 알파고(AlphaGo)가 바둑 세계 챔피언 이세돌에게 도전장을 내민 것인데요. 바둑은 경우의 수가 약 2x10,170으로 우주 전체 원자 수보다 많은 보드게임입니다. 따라서 당연히 사람들은 이세돌이 승리할 것으로 생각했지만 결과는 놀라웠습니다. 알파고가 이세돌을 4:1로 제압한 것인데요. 컴퓨터가 인간을 이길 수 없는 마지막 보류라고 여겨졌던 바둑마저 컴퓨터에 챔피언의 자리를 내어준 것입니다. 그리고 1년 후 알파고 마스터라는 이름으로 커제와 대결했고 커제는 단 1승도 거두지 못했습니다. 이 대국을 마지막으로 알파고는 공식적으로 은퇴를 선언했고 이세돌은 알파고에 1승을 거둔 .. 더보기
왜 지능형 챗봇인가? 왜 지금인가? 가트너(Gartner)의 하이프 사이클(Hype Cycle)은 ICT 신기술의 성숙도를 판단하고 기업이 해당 신기술을 도입 여부를 판단하는 좋은 잣대로 사용됩니다. 가상 개인 비서(Virtual Personal Assistants), 자연어 질의응답(Natural-Language Question Answering), 대화형 UI(Conversational User Interface)로 대표되는 지능형 챗봇 기술은 하이프 사이클의 어떤 위치에 놓여 있을까요? l 가트너, 하이프 사이클 (출처: https://www.gartner.com/technology/research/methodologies/hype-cycle.jsp) 가상 개인 비서 기술과 대화형 UI 기술은 기술이 관심을 받기 시작하는 초기 단계인.. 더보기