본문 바로가기

컴퓨팅 파워

인공지능 시대, 인공지능 하드웨어의 현재 상황은? 인공지능(AI)은 어느덧 일반적인 기술이 되어 이미지 인식과 음성인식 이외에도 다양한 영역으로 확산 중입니다. 인공지능 확산에 크게 기여한 요인으로는 딥러닝 알고리즘의 진화와 더불어 GPU의 활용을 들 수 있는데요. GPU는 슈퍼컴퓨터 대신에 수천 개의 코어를 한 장의 GPU 카드만으로 구동시킬 수 있도록 하여 많게는 매번 수억 번의 연산을 해야 하는 딥러닝 알고리즘의 대중화를 가능하게 했습니다. 그러나 GPU는 전력 소모가 크고 발열이 심해 디바이스에 탑재하기 어려우며 또한 CPU처럼 분산 환경을 구성하여 클라우드를 구현하기도 어렵습니다. 인공지능 하드웨어의 진화 대규모의 인식 서비스를 위해서 수백 대의 GPU 서버를 활용해야 하고, 서버 기반이기 때문에 실시간 성능에 제약이 발생하는 상황에서 이를 극.. 더보기
인공지능 구현의 한계와 극복 방법은 무엇일까? 딥러닝으로 인해 인공지능 분야가 빠르게 혁신되고 있지만, 딥러닝은 엄청난 양의 데이터와 컴퓨팅 파워를 요구한다는 점에서 큰 한계를 갖습니다. 2012년 구글이 구현한 인공지능은 유튜브 영상 속 고양이를 스스로 구분해 내며 시작하였으나 이것은 약 1,000만 개의 동영상을 학습한 결과였습니다. 2016년 이세돌 9단과 대결에서 승리한 알파고는 약 3,000만 개의 착점 정보와 16만 개의 프로 바둑 기사의 기보가 필요했는데요. 동시에 이러한 데이터 학습 과정과 실제 바둑 대결에는 클라우드 기반으로 연결된 약 1,202개의 CPU와 176개의 GPU가 동시에 활용되며 약 3억 4천 번의 반복 학습을 통해 구현된 결과물이었습니다. 따라서 현재까지의 인공지능을 구현해 혁신을 이루어 내는 기업들은 엄청난 데이터와.. 더보기